THE IN-PLANE DEFORMATION AND FAILURE

OF BRICKWORK

by

A. W. PAGE

A dissertation submitted to the University of Newcastle in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.

December, 1977

CERTIFICATE

I hereby certify that the work embodied in this thesis is the result of original research and has not been submitted for a higher degree to any other

Don Faculty of Science

A.W. PAGE

ACKNOWLEDGEMENTS

I would like to express my appreciation to Mr. P.W. Kleeman for the advice and encouragement he has given me throughout this investigation. Thanks are also due to Professor F.M. Henderson, to Mr. G. Hanson and the staff of the Civil Engineering Laboratory, to Mrs. J. Stones for typing the manuscript, and finally to my wife for the tolerance she has displayed over the past five years.

ABSTRACT

This thesis presents a method for the simulation of the in-plane behaviour of brickwork using the finite element technique. The proposed finite element model reproduces the non-linear characteristics of brickwork caused by material non-linearity and progressive joint failure. Brickwork is considered as an assemblage of elastic brick continuum elementsacting in conjunction with linkage elements simulating the mortar joints. The joint elements are assumed to have high compressive strength, (with non-linear deformation characteristics), low tensile strength, and limited shear capacity depending upon the bond strength and degree of of compression present.

The material properties for this model are determined from uniaxial tests on bricks, and panels and couplets of brickwork. Tests on a restrained brickwork deep beam and a simply supported, composite wall-beam panel are used as a basis for comparison between predicted theory and experimental evidence. To reduce the required capacity of testing equipment, all brickwork tests are performed at half scale. An investigation of possible scale effects is also carried out.

Sensitivity analyses of the critical parameters influencing brickwork behaviour are performed to illustrate the potential of the model for use as both a research tool and an aid to design.

CONTENTS

														Page
	LIST	OF FIGU	RES .	•	•	•	•	•	•	•	•	•		(i)
	LIST	OF TABL	es ·	•	•	•	•	•	•	•	•	•		(v)
	NOTA	FION	• •	•	•	•	•	•	•		•			(vii
1.	INTRO	DUCTION	• •	•	•	•	•	•	•	•	•			1
2.	REVIE	EW OF BR	ICKWORK	PROPE	RTIE	S								
	2.1	Introd	uction	•	•	•	•	•		•	•		•	7
	2.2	Histor	ical Re	view	•	•			•	•		•		7
	2.3	Materi	al Beha	viour		•		•	•					12
		2.3.1	Bricks											
		2.3.2	Mortar											
		2.3.3	Brickwa	ork					1					
	2.4	Wall Be	ehaviour		•			•			•			33
	2.5	The Cor	nposite	Actio	n of	Wal	ls Si	uppo	rted	on	Beam	S		38
	2.6	Workman	nship ar	nd Sit	e Co	ntro	1	•				•		44
	2.7	Conclus	sion	•	•	•	•			•	•	•		45
з.	REVIE	W OF EXI	PERIMENT	CAL IN	VEST	IGAT	ION							
	3.1	General	L Descri	ption	of '	rest	s Pei	rfori	med	•	•	••		47
	3.2	Instrum	nentatio	on•	•	•	•	•						53
	3.3	Constru	action H	roced	ure	•	•		•					55
	3.4	General	. Commen	its on	Brid	ckwoi	ck Te	estir	ng		•	•		56
4.	BRICK	AND MOR	TAR PRO	PERTI	ES									
	4.1	Brick P	roperti	es - :	Intro	oduct	tion		•	•		•		58
	4.2	Compres	sive St	rengtl	h of	Brid	cks	•		•		•	•	59
	4.3	Elastic	Proper	ties d	of Br	ricks	3 -	•	•			•		62
		4.3.1	Load Pa	ralle	l to	Bed	Joir	nt Or	rient	tati	on			
		4.3.2	Load No	rmal 1	to Be	ed Jo	int	Orie	entat	tion				
		4.3.3	Poisson	's Rat	tio c	of Br	rick							
		4.3.4	Brick T	ests t	to Fa	ilur	re							

	4.4	Mortar Properties	• •	68
	4.5	Stress-Strain Characteristics of Mortar		70
	4.6	Conclusion		72
5.	BRICK	WORK PROPERTIES		
	5.1	Introduction		74
	5.2	Panels Loaded in Compression with Load Normalto the Bed Joint		78
	5.3	Tension Test on Brickwork Couplets .		83
	5.4	Shear Panel Tests on Brickwork		85
	5.5	Standard Brickwork Compression Test		93
	5.6	Conclusion		93
6.	SCALE	EFFECTS FOR HALF SCALE BRICKWORK		
	6.1	Introduction		95
	6.2	Previous Research		96
	6.3	Experimental Investigation of Scale Effects		97
	6.4	Results of Experimental Investigation		101
	6.5	Conclusion		110
7.	FINIT	E ELEMENT MODEL FOR BRICKWORK		
	7.1	Introduction		113
	7.2	Previous Methods of Analysis		113
		7.2.1 Methods Other Than Finite Element Methods		
		7.2.2 Finite Element Methods		
	7.3	Review of the Finite Element Method		117
		7.3.1 Summary of Analysis Procedure		
		7.3.2 Basic Equations From Solid Mechanics		
	7.4	Non-Linear Behaviour	· .	123
		7.4.1 Non-Linear Solution Techniques		
		7.4.2 Specific Application of the Non-Linear Soluti Techniques	on	

	7.5	Material Models for Brickwork
	7.6	Material Model Adopted from the Present Experiments 133
		7.6.1 Brick Properties
		7.6.2 Deformation Characteristics of Mortar Joints
		7.6.3 Failure Criterion for Mortar Joints
	7.7	Finite Element Model Adopted
		7.7.1 Brick Continuum Elements
		7.7.2 Joint Elements
		7.7.3 Beam Elements
	7.8	Isotropic, Elastic Finite Element Model 164
	7.9	Summary
8.	PROGR	AM 'BWORK'
	8.1	Introduction
	8.2	Program Structure and Operation
	8.3	Subroutine Descriptions
	8.4	Summary
9.	EXPER	IMENTAL CHECK OF ANALYTICAL MODEL
	9.1	Introduction
	9.2	Experimental Tests
		9.2.1 Brickwork Deep Beam Test
		9.2.2 Composite Deep Beam Test
	9.3	Analytical Models of the Deep Beam Test
		9.3.1 Analysis Using Program BWORK
		9.3.2 Linear Elastic Analysis
		9.3.3 Comparison of Non-Linear and Linear Elastic Analyses
	9.4	Analytical Models of the Composite Beam Test 188
		9.4.1 Analysis Using Program BWORK
		9.4.2 Linear Elastic Analysis
		9.4.3 Comparison of Non-Linear and Linear Elastic Analyses

	9.5	Compari	son of Experimental and Analytical Results	196
		9.5.1	General Discussion of Experimental Results	
		9.5.2	Deep Beam Test	
		9.5.3	Composite Beam Test	
	9.6	Conclus	ion	212
10.	SENSI	TIVITY A	NALYSIS OF CRITICAL PARAMETERS	
	10.1	Introdu	ction	214
	10.2	Deep Be	am Test	215
		10.2.1	Brick Stiffness	
		10.2.2	Joint Thickness	
		10.2.3	Joint Deformation Characteristics	
		10.2.4	Joint Failure Criterion	
	10.3	Composi	te Deep Beam Test	233
		10.3.1	Location of Support	
		10.3.2	Properties of Joint Between Wall and Supporting Beam	
		10.3.3	Variation in Wall-Beam Stiffness Ratio	
	10.4	Summary		251
11.	CONCL	USION		254
	REFER	ENCES		257
	APPEN	IDIX A	Methods of Load Application and Strain Measurement	
	APPEN	IDIX B	Construction Procedure for Brickwork	
	APPEN	DIX C	Brick Properties	
	APPEN	IDIX D	Mortar Properties	
	APPEN	DIX E	Brickwork Properties	
	APPEN	DIX F	Investigation of Scale Effects for Half Scale Brickwork	
	APPEN	DIX G	Detailed Description of Program BWORK	
	APPEN	IDIX H	Verification Test Results	

LIST OF FIGURES

Figure	1	Summary of Thesis Structure Chapter 1
Figure	2	Principles of Conventional and Structural Brickwork . Chapter 2
Figure	3	Relationship Between Brickwork Strength and Brick and Mortar Strength
Figure	4	Brick and Mortar Stresses Due to Applied Compressive Load
Figure	5	Influence of Joint Thickness on Brickwork Strength
Figure	6	Relationship Between Shear and Normal Stress for Mortar Joints
Figure	7	Stress-Strain Curves for Brickwork Pillars
Figure	8	Influence of Slenderness Ratio on Compressive Strength
Figure	9	Mechanism of Composite Action
Figure	10	Preparation of Half Scale Bricks
Figure	11	Brick Compression Test With and Without Brush Platens . Chapter 4
Figure	12	Brick Calibration Tests
Figure	13	Stress-Strain Curves for Bricks Loaded in Uniaxial Compression
Figure	14	Average Stress-Strain Curve for Mortar Loaded in Uniaxial Compression
Figure	15	Typical Envelope for the Biaxial Strength of Concrete . Chapter 5
Figure	16 -	Uniaxial Compression Test on Brickwork with Varying Bed Joint Orientation
Figure	17	Uniaxial Compression Test on Brickwork Panels, Load Normal to the Bed Joint
Figure	18	Uniaxial Compression Test on Brickwork Panels, Load Normal to the Bed Joint, Typical Failure
Figure	19	Stress-Strain Curves for Brickwork Panels
Figure	20	Lateral v. Longitudinal Strain for Compression Panels
Figure	21	Tension Test on Brickwork Couplets
Figure	22	Uniaxial Compression Test on Brickwork Panels, Load Inclined to the Bed Joint

1

Figure	23	Schematic Arrangement, Brickwork Shear Panel Tests
Figure	24	Average Stress-Strain Curves in Shear for Brickwork Panels
Figure	25	Ultimate Strengths of Shear Panels and Tension Couplets
Figure	26	Construction of Half and Full Scale Brickwork Panels . Chapter 6
Figure	27	Test on Full Scale Brickwork Panel
Figure	28	Full Scale Tension Test on Brickwork Couplets
Figure	29	Ultimate Strengths of Model and Prototype Shear Panels and Tension Couplets
Figure	30	Average Stress-Strain Curves in Shear for Panels with Varying Bed Joint Angles
Figure	31	Average Stress-Strain Curves in Shear for Panels with Varying Bed Joint Angles (Enlarged Initial Section)
Figure	32	Average Stress-Strain Curves in Shear for Model and Prototype
Figure	33	Average Stress-Strain Curves for Model and Prototype
Figure	34	Three Dimensional Stress State Chapter 7
Figure Figure	34 35	Three Dimensional Stress State Chapter 7 Non-Linear Behaviour
Figure Figure Figure	34 35 36	Three Dimensional Stress State Chapter 7 Non-Linear Behaviour Non-Linear Solution Techniques
Figure Figure Figure Figure	34 35 36 37	Three Dimensional Stress State Chapter 7 Non-Linear Behaviour Non-Linear Solution Techniques Schematic Arrangement, Compression Test on Brickwork Panels
Figure Figure Figure Figure	34 35 36 37 38	Three Dimensional Stress State Chapter 7 Non-Linear Behaviour Non-Linear Solution Techniques Schematic Arrangement, Compression Test on Brickwork Panels Stress-Strain Curves for Brick, Brickwork and Mortar
Figure Figure Figure Figure Figure	34 35 36 37 38 39	Three Dimensional Stress State Chapter 7 Non-Linear Behaviour Non-Linear Solution Techniques Schematic Arrangement, Compression Test on Brickwork Panels Stress-Strain Curves for Brick, Brickwork and Mortar Assumed Mortar Stress-Strain Curve
Figure Figure Figure Figure Figure Figure	34 35 36 37 38 39 40	Three Dimensional Stress State Chapter 7 Non-Linear Behaviour Non-Linear Solution Techniques Schematic Arrangement, Compression Test on Brickwork Panels Stress-Strain Curves for Brick, Brickwork and Mortar Assumed Mortar Stress-Strain Curve Schematic Arrangement, Brickwork Shear Panel Tests
Figure Figure Figure Figure Figure Figure Figure	34 35 36 37 38 39 40 41	Three Dimensional Stress State Chapter 7 Non-Linear Behaviour Non-Linear Solution Techniques Schematic Arrangement, Compression Test on Brickwork Panels Stress-Strain Curves for Brick, Brickwork and Mortar Assumed Mortar Stress-Strain Curve Schematic Arrangement, Brickwork Shear Panel Tests Stress-Strain Curves in Shear for Brick, Mortar and Brickwork
Figure Figure Figure Figure Figure Figure Figure	34 35 36 37 38 39 40 41 42	Three Dimensional Stress State Chapter 7 Non-Linear Behaviour Non-Linear Solution Techniques Schematic Arrangement, Compression Test on Brickwork Panels Stress-Strain Curves for Brick, Brickwork and Mortar Assumed Mortar Stress-Strain Curve Schematic Arrangement, Brickwork Shear Panel Tests Stress-Strain Curves in Shear for Brick, Mortar and Brickwork Assumed Mortar-Stress-Strain Curve in Shear
Figure Figure Figure Figure Figure Figure Figure Figure	 34 35 36 37 38 39 40 41 42 43 	Three Dimensional Stress State Chapter 7 Non-Linear Behaviour Non-Linear Solution Techniques Schematic Arrangement, Compression Test on Brickwork Panels Stress-Strain Curves for Brick, Brickwork and Mortar Assumed Mortar Stress-Strain Curve Schematic Arrangement, Brickwork Shear Panel Tests Stress-Strain Curves in Shear for Brick, Mortar and Brickwork Assumed Mortar-Stress-Strain Curve in Shear Failure Cirterion for Mortar Joints
Figure Figure Figure Figure Figure Figure Figure Figure Figure	 34 35 36 37 38 39 40 41 42 43 44 	Three Dimensional Stress State Chapter 7 Non-Linear Behaviour Non-Linear Solution Techniques Schematic Arrangement, Compression Test on Brickwork Panels Stress-Strain Curves for Brick, Brickwork and Mortar Assumed Mortar Stress-Strain Curve Schematic Arrangement, Brickwork Shear Panel Tests Stress-Strain Curves in Shear for Brick, Mortar and Brickwork Assumed Mortar-Stress-Strain Curve in Shear Failure Cirterion for Mortar Joints Typical Finite Element Subdivision
Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure	 34 35 36 37 38 39 40 41 42 43 44 45 	Three Dimensional Stress State Chapter 7 Non-Linear Behaviour Non-Linear Solution Techniques Schematic Arrangement, Compression Test on Brickwork Panels Stress-Strain Curves for Brick, Brickwork and Mortar Assumed Mortar Stress-Strain Curve Schematic Arrangement, Brickwork Shear Panel Tests Stress-Strain Curves in Shear for Brick, Mortar and Brickwork Assumed Mortar-Stress-Strain Curve in Shear Failure Cirterion for Mortar Joints Typical Finite Element Subdivision Pure Bending of Rectangular Elements

(ii)

- Figure 47 Joint Element Details
- Figure 48 Joint Element Deformation
- Figure 49 Modelling Beam Flanges
- Figure 50 Flow Diagram, Program 'BWORK' Chapter 8
- Figure 51 General Arrangement of Deep Beam Test . . . Chapter 9
- Figure 52 Schematic General Arrangement of Deep Beam Test
- Figure 53 Mode of Failure for Deep Beam Test
- Figure 54 General Arrangement of Composite Beam Test
- Figure 55 Schematic General Arrangement of Composite Beam Test
- Figure 56 Deep Beam Test, Finite Element Subdivision
- Figure 57 Deep Beam Test, Vertical Stress Distributions from Analytical Solutions
- Figure 58 Deep Beam Test, Cracking Sequence Finite Element Model
- Figure 59 Deep Beam Analysis, Horizontal Stress Distribution on X-X.
- Figure 60 Composite Beam Test, Finite Element Subdivision
- Figure 61 Composite Beam Test, Cracking Sequence Finite Element Model
- Figure 62. Composite Beam Test, Finite Element Subdivision, Linear Elastic Analysis
- Figure 63 Composite Beam Test, Horizontal Stresses at Centreline (Analytical Solutions)
- Figure 65 Composite Beam Test, Forces in Supporting Beam (Analytical Solutions)

1

- Figure 65 Composite Beam Test, Vertical Stress Distributions (Analytical Solutions)
- Figure 66 Deep Beam Test, Vertical Stress Distributions, Run #1
- Figure 67 Deep Beam Test, Vertical Stress Distributions, Run #2
- Figure 68 Composite Beam Test, Vertical Stress Distributions, Run #2

Figure 69 Deep Beam Test, Vertical Stress Distributions

- Figure 70 Composite Beam Test, Horizontal Stress Distributions at Centreline
- Figure 71 Composite Beam Test, Supporting Beam Behaviour
- Figure 72 Composite Beam Test, Vertical Stress Distributions
- Figure 74 Sensitivity Analysis, Deep Beam Test, Variation in Stress with Changing Joint Elastic Properties
- Figure 75 Sensitivity Analysis, Deep Beam Test, Variation in Joint Stiffness - Cracking Sequence
- Figure 76 Sensitivity Analysis, Variations in Joint Failure Criteria
- Figure 77 Sensitivity Analysis, Deep Beam Test, Variation in Joint Failure Criteria - Cracking Sequence
- Figure 78 Sensitivity Analysis, Deep Beam Test, Variation in Stress Along Fifth Brick Course with Changing Failure Criterion
- Figure 79 Sensitivity Analysis, Composite Beam Test, Horizontal Stresses Down Centreline, Various Support Locations
- Figure 80 Sensitivity Analysis, Composite Beam Test, Cracking Pattern for Various Support Locations
- Figure 81 Sensitivity Analysis, Composite Beam Test, Vertical and Shear Stresses on Wall-Beam Joint, Various Support Locations
- Figure 82 Sensitivity Analysis, Composite Beam Test, Failure Criteria for Wall-Beam Joint
- Figure 83 Sensitivity Analysis, Composite Beam Test, Cracking of Wall-Beam Joint for Differing Failure Criteria

Figure 84 Sensitivity Analysis, Composite Beam Test, Horizontal Stresses Down Centreline, Varying Wall-Beam Joint Failure Criterion

LIST OF TABLES

Table	I	Summary of Tests Performed	Chapter	3
Table	II	Summary of Brick Properties	Chapter	4
Table	III	Compression Tests on Concrete and Brick Specimens With and Without Brush Platens		
Table	IV	Compression Tests on Type 1 and Type 2 Bricks With and Without Brush Platens		
Table	V	Modulus of Elasticity of Individual Bricks Loaded Parallel and Normal to the Bed Joint		
Table	VI	Poisson's Ratio for Type 2 Bricks		
Table	VII	Summary of Mortar Properties		
Table	VIII	Ultimate Strength of Brickwork Panels, Load	Chapter	5
Table	IX	Tensile Strength of Brickwork Couplets	Chapter	6
Table	Х	Stresses in Supporting Beam at Centre Span (Chapter	9
Table	XI	Calculated Stress Distributions Along Fifth Brick . (Course, Deep Beam Test	Chapter	10
Table	XII	Calculated Maximum Brick Stresses in the Deep Beam		
Table	XIII	Calculated Horizontal Stresses Down Panel Centreline, Deep Beam Test - Varying Joint Stiffness		
Table	XIV	Calculated Maximum Principal Stress in Panel, Deep Beam Test - Varying Joint Stiffness		
Table	XV	Calculated Vertical Stresses Along Fifth Brick Course, Deep Beam Test -Varying Joint Stiffness		
Table	XVI	Calculated Horizontal Stresses Down Panel Centreline, Deep Beam Test - Varying Joint Failure Criterion		
Table	XVII	Calculated Force in Supporting Beam at Mid Span, Composite Beam Test - Varying Support Location		
Table	XVIII	Calculated Stresses in Supporting Beam at Mid Span, Composite Beam Test - Varying Support Location		
Table	XIX	Stress Magnification Factor Near Supports, Composite Beam Test - Varying Support Location		
Table	XX	Calculated Force in Supporting Beam at Mid Span, Composite Beam Test, Varying Wall-Beam Joint Failure Criterion		

(v)

Table XXI Calculated Stresses in Supporting Beam at Mid Span, Composite Beam Test - Varying Wall-Beam Joint Failure Criterion Table XXII Vertical Stresses Along Fifth Brick Course, Composite Beam Test - Varying Wall-Beam Joint Failure Criterion Table XXIII Stress Magnification Factor Near Supports, Composite Beam Test - Varying Wall-Beam Joint Failure Criterion Table XXIV Calculated Horizontal Stresses Down Panel Centreline, Composite Beam Test - Varying Beam and Brick Stiffness Table XXV Total Force in Supporting Beam for Varying Beam Stiffness, Composite Beam Test

NOTATION

Notes: (1) The following general terminology has been adopted: .

- { } denotes a column vector
- [] denotes a row vector, or rectangular or square matrix.
 []^T denotes the transpose of a matrix or column vector.
- (2) The notation adopted in the computer program is listed in Appendix G.
- {a} Displacement function coefficients
- A Cross-sectional area of axial linkage element
- [B] Transformation relating strains and nodal displacements
- 2a, 2b Rectangular element length and height respectively
- C Joint cohesion (shear bond strength)
- [C] Constitutive stress-strain matrix
- [D] Constitutive strain-stress matrix
- {d} Nodal displacements for an element
- E Modulus of elasticity
- E Modulus of elasticity of brick loaded parallel to bed joint
- E Modulus of elasticity of brick loaded normal to bed joint

E Average modulus of elasticity of brick

- E' Tangent modulus of elasticity
- {f} Nodal forces for an element
- {F} Nodal forces for the structure
- G Averaged shear modulus of brick
- G' Tangent shear modulus of mortar
- [k] Element stiffness matrix
- [K] Structure stiffness matrix
- L Element length

L _b	Total brick thickness in a measured gauge length
Lm	Total mortar thickness in a measured gauge length
L _t	Total gauge length
{m}	Element displacements
[N]	Transformation relating nodal and element displacements
NB	Half bandwidth of structure stiffness matrix
{ P }	Body forces for initial stress correction
s, n	Shear and normal displacement of a joint element
[s]	Transformation relating element strains to element displacements
Т	Wall thickness
t _b	Brick thickness (i.e. vertical distance between bed joints)
t _m	Joint thickness
u,v,w	Displacements in x, y and z directions
[Z]	Transformation relating displacement function coefficients to element displacements
[Z _N]	Transformation relating nodal and displacement function coefficients
al to a8	Displacement function coefficients
β_1 to β_4	Displacement function coefficients
Y _{xy} ,Y _{yx} ,Y _z	Components of shear strain
Υ _b	Shear strain in brick
Υm	Shear strain in mortar
Y _{it}	Total shear strain in brick and mortar
Δ _b	Brick deformation
Δ _m	Mortar deformation
∆ _t	Total deformation
{8}	Nodal displacements for the structure
{ε}	Element strains
{e_}}	Initial strains for an element

ε _x ,ε _y ,ε _z	Components of normal strain
€Ъ	Brick strain
ε _m	Mortar strain
ε _t	Total strain
θ	Angle of bed joint inclination to the applied load
ν	Poisson's ratio
π	Total potential energy
σ1,σ2	Maximum and minimum principal stresses
σx,σy,σz	Components of noraml stress
σ _n	Normal stress on mortar joint
onu	Ultimate normal stress on mortar joint
{σ}	Element stresses
{σ_}}	Initial stresses for the element
τ	Shear stress on mortar joint
τ _u	Ultimate shear stress on mortar joint
^T xy ^{, T} yz ^{, T} zz	Components of shear stress
φ	Angle between bed joint and measured gauge length
{φ}	Surface tractions for an element

(ix)